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ABSTRACT
We propose a novel algorithm for uncovering the colloquial
boundaries of locally characterizing regions present in col-
lections of labeled geospatial data. We address the problem
by first modeling the data using scale-space theory, allow-
ing us to represent it simultaneously across different scales
as a family of increasingly smoothed density distributions.
We then derive region boundaries by applying localized la-
bel weighting and image processing techniques to the scale-
space representation of each label. Important insights into
the data can be acquired by visualizing the shape and size of
the resulting boundaries for each label at multiple scales. We
demonstrate our technique operating at scale by discovering
the boundaries of the most geospatially salient tags asso-
ciated with a large collection of georeferenced photos from
Flickr and compare our characterizing regions that emerge
from the data with those produced by a recent technique
from the research literature.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS ; H.3.1 [Information Storage
and Retrieval]: Content Analysis and Indexing; H.3.3 [In-
formation Storage and Retrieval]: Information Search
and Retrieval—Information filtering

General Terms
Algorithms, Theory, Measurement

Keywords
Geotagged data, spatial analysis, region discovery, scale-space
theory, Flickr

1. INTRODUCTION
When considering characteristic geographic areas around the
world, there are those that are canonically described in ga-
zetteers (such as cities and states) and there are those that
are not, such as the Sahara desert in Africa, the Bordeaux
wine region in France and the red light district in Amster-
dam. Nonetheless, geographic regions such as the latter are
colloquially well-known and there are many others for which
official boundaries do not exist or differ from their colloquial
boundaries as determined by the consensus of the general
populace.
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In this paper we describe a novel algorithm that automati-
cally uncovers the colloquial boundaries of locally character-
izing regions present in collections of labeled geo-referenced
data. Our technique uses scale-space theory [47, 27] to detect
those geographic areas for which the occurrence of a label
is particularly prominent with respect to the other labels
occurring in the same area, at a particular scale. Naturally,
the set of scales at which characteristic regions can be found
for a certain label depends on the nature of the underlying
data and the spatial distributions of the labels. The scale-
space paradigm is therefore especially suitable, because it
represents the data simultaneously across different scales as
a family of increasingly smoothed density distributions, al-
lowing us to automatically derive spatially coherent regions
by applying image analysis techniques to the scale-space rep-
resentations of the data for each label and at each scale in a
consistent manner, where the regions are generated by ap-
plying the exact same sequence of steps at each scale.

In the past, geo-referenced collections have been predom-
inantly analyzed for the extraction of spatial knowledge for
a limited number of pre-defined labels or queries, as well as
for specific geographic areas. For instance, in the context of
online tagged photos – the scenario we primarily focus on
in this paper – regions are often specifically restricted to
points of interest such as landmarks [7, 34] or they are de-
fined as dense areas of photos from which the most salient
tags are discovered [1, 9]. The analyses are further typically
performed at a single fixed scale, ignoring the effects of scale
on shape and size of the regions, even though intuitively the
scale at which any region discovery is performed has a large
influence on the final outcome, i.e. coherent regions at a par-
ticular scale may not necessarily be coherent at other scales.

To summarize, the main contributions of our work are the
following:

• An effective framework for automatically and efficiently
discovering the colloquial boundaries of locally character-
izing regions present within large collections of labeled
geotagged data at multiple scales using scale-space theory
and image processing techniques.

• Insights into the effects of scale on the shape, size and
quantity of the derived regions and a comparison of the
generated regions with those produced by a recent tech-
nique from the research literature using a multi-million
sample of geo-referenced photos.

Our technique can be applied to any collection of labeled
geographic data and is thus not restricted to any particu-
lar domain. The regions our technique uncovers can be of
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benefit to many tasks, for instance monitoring the spread
of diseases or discovering trending news topics across the
world over time at global and local scales. In the context
of multimedia our technique is useful for topics such as tag
recommendation and disambiguation [46], content tagging
and placing [15, 26], and region summarization [39, 48].

The remainder of this paper is organized as follows. We
first discuss related work in Section 2 before presenting our
algorithm for boundary discovery using scale-space theory in
Section 3. In Section 4 we propose optimizations to handle
large-scale data and illustrate our technique by discovering
and visualizing the detected tag regions within Flickr photos.
We follow with an analysis of the properties of our algorithm
in Section 5. We conclude the paper with final remarks and
future outlooks in Section 6.

2. RELATED WORK
Discovering geographic regions within georeferenced data
has been an active research topic for many years. A vari-
ety of methods can be applied to uncover the hidden spatial
structures, most notably techniques such as clustering [10],
density estimation [17, 21] and neural networks [16]. For ex-
ample, Hargrove et al. [13] used multivariate clustering to
uncover distinct ecoregions based on environmental condi-
tions. In recent years, georeferenced multimedia collections
have considerably grown in size, in particular due to the
availability of digital cameras with built-in GPS receivers
that can automatically attach the geographic location to ev-
ery photo that is taken. We can therefore find a considerable
number of methods in the research literature that try to rep-
resent or summarize geographical regions in terms of either
the tags associated with the photos in that region [1, 9] or
by the photos themselves [39, 7, 23, 19, 48, 8]. For example,
language modeling approaches [40, 44, 14] characterize cells
that partition the world into discrete units for automatic
photo and video geo-localization.

However, the notion of scale is typically not naturally inte-
grated into these techniques, requiring tuning of parameters
for each different level of detail at which the data is analyzed.
The analyses in the literature are furthermore commonly re-
stricted to a limited set of geographic areas, while the visual-
izations are restricted to modifying objects of known shape
and size by increasing details at small scales and reducing de-
tails at large scales. Yet, especially in a geographic context,
scale is inherently part of the labeled data and thus should
form an integral part of the data modeling, analysis and vi-
sualization process. Scale-space theory [47, 27] provides a
framework for analyzing the structure of multi-dimensional
signals at multiple scales, which has been successfully used
within many different fields of research. In the field of com-
puter vision performing analysis at multiple scales benefits
many tasks, such as feature detection [32, 5] and object de-
tection [30], while in a geographic context the scale-space
framework has been used for analyzing [28, 45] and for vi-
sualizing [4, 2] data collections.

In our work, we apply the concept of scale-space theory to
labeled data in order to automatically infer regions that are
locally characterizing across any area at any scale. While
the notion of scale was used in [36, 24] for the detection
of photo tags that exhibit significant invariant spatial pat-
terns, we in contrast present a more general approach that
focuses on defining the boundaries of the characteristic re-
gions for any label, whether or not it demonstrates spatial

invariance. We furthermore do not assume beforehand that
labels are related, unlike the authors of [9], who assume that
when they are used in close proximity to each other they
are therefore semantically related. The most closely related
techniques to ours assign localized weights to labels to derive
the boundaries of their associated geospatial regions. None-
theless, these have as drawbacks that the discovered regions
can only be elliptical of shape [3], that they have only been
applied at very limited scales and geographic areas [22], or
that they generate an overwhelming amount of regions [18].

3. ALGORITHM
In our approach we do not focus on the items in a data col-
lection, but instead only focus on the individual instances of
their metadata labels (e.g. tags in the case of online photos).
We aim to directly discover coherent regions of each label by
analyzing their spatial distributions, one at a time. Our tech-
nique is thus unlike many of the existing techniques, such as
those discussed in the related work section, which first try
to discover coherent regions by analyzing how the data is
geographically distributed and only afterwards attempt to
find the label(s) that most accurately describe each of these
regions. Our region discovery approach consists of four main
steps, namely:

1. Data labeling – Each instance in the collection of geo-
graphic data is assigned one or more labels for which
ultimately the region boundaries are to be discovered.

2. Scale-space representation – The labeled data is rep-
resented in a scale-space as a family of increasingly
smoothed two-dimensional density distributions.

3. Region generation – Two-dimensional regions are gen-
erated at multiple scales for each label separately.

4. Region selection – The generated regions are validated
in order to discard those that are not appropriate at
particular scales or do not meet criteria suited to the
envisioned use case.

In the following sections we detail each of the aforementioned
steps in the algorithm.

3.1 Data labeling
The labels for which we aim to derive their characteristic
regions can be simple, e.g. words present in a georeferenced
document, or more complex, e.g. visual concepts detected
in a georeferenced image. If the data collection is unlabeled,
each instance in the collection first needs to be associated
with one or more labels before our algorithm can be applied,
where the set of labels may be manually specified by a user
beforehand or automatically derived from the data. The la-
beling of an instance is typically done by extracting suitable
features and then performing feature analysis and classifica-
tion to obtain its labels. Whenever an instance or label does
not meet pre-defined quality criteria it can be removed from
the dataset. To illustrate, a textual document could be con-
sidered as an instance and the words it contains as labels,
where those labels that are stop words may be discarded.

Given a set of labels Λ, we can define the data collection as
DΛ =

⊎
Dλ|λ ∈ Λ, where the

⊎
operator performs a union

of the data items associated with each label Dλ. A data item
that has multiple labels will therefore be included as many
times in DΛ as it has labels. We further define Dλ , {d},
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where d has label λ and is represented by a tuple (lx, ly),
which contains a geographic location that is expressed by
longitude lx and latitude ly.

3.2 Scale-space representation
Scale-space theory is predominantly used in image analy-
sis, where an image is represented as a family of images
obtained by convolving it using a smoothing kernel param-
eterized with a scaling factor. Scale-spaces are particularly
useful for isolating regions of pixels that exhibit segmenta-
tion at certain scales by comparing subsequent increments of
smoothing, a notion that techniques such as SIFT [32] and
SURF [5] have successfully used for the purpose of extracting
scale-invariant features from images. We exploit this prop-
erty of the scale-space representation in order to uncover
regions of sizes appropriate at a given scale. In this work
we define a region as a closed area on our planet that is
bounded by a non-self-intersection polygon, which we refer
to as its contour.

In order to apply scale-space theory to our data we con-
sider a discretized histogram of label counts to be analogous
to a grayscale image. We first represent the data for each
label Dλ as a two-dimensional density histogram fλ(x, y),
such that

|Dλ| =
w∑
x=1

h∑
y=1

fλ(x, y) (1)

where w and h are the number of bins along the width and
height of the histogram. Even though geographic locations
can be represented as a bounded function of continuous lon-
gitude and latitude values, they are typically expressed in
the discrete domain. In particular, one of the most precise
ways of obtaining a geographic location is through the use
of digital global positioning systems, which are discrete by
nature and yield locations with an accuracy usually in the
order of meters, depending on equipment and environmental
conditions. We thus represent our data as a two-dimensional
histogram along longitude and latitude using finite address-
ability, where the exact resolution of the histogram depends
on the precision of the underlying data as well as on the en-
visioned use case. For example, for geographic coordinates
expressed with up to two decimal places of precision in longi-
tude and latitude, over the whole world the histogram would
be of dimensions w = 36, 000 and h = 18, 000, ensuring that
no cell would be larger than the equivalent of 0.01◦ longitude
at the equator, which approximately measures 1km.

Using this data definition, we then define the linear scale-
space representation of a family of increasingly smoothed
histograms Lλ(x, y; t) for a given label λ as a convolution of
fλ(x, y) with Gaussian kernels G(x, y; t), as expressed by

Lλ(x, y; t) = G(x, y; t) ∗ fλ(x, y) (2)

where t denotes the variance of the kernel and thus σ =
√
t

its standard deviation. At t = 0 we obtain the original
density distribution of the spatial data for a certain label,
whereas for increasing values of t the data is convolved with
a kernel of increasing width, so that the density distribution
is increasingly smoothed and as a result more and more high
frequency details are removed. We exploit this property in
the next step to discover the boundaries of the various re-
gions where a label is used across the world at individual
scales.

3.3 Region generation
For a given label λ, its scale-space representation Lλ, and
a certain scale factor t, we aim to extract a set of locally
characterizing regions. These characteristic regions are geo-
graphic areas where the occurrence of a particular label is
particularly prominent with respect to the other labels oc-
curring in the same area, at the specified scale.

Label prominence
To account for the prominence of a label for a particular
point in space at a particular scale, we weight Lλ(x, y; t) in
proportion to how much it contributes to the overall data
density LΛ(x, y; t), such that

L′λ(x, y; t) =
(Lλ(x, y; t))2

LΛ(x, y; t)
(3)

Spatial activity isolation
From the resulting histogram we then produce a binary rep-
resentation that isolates the high frequency spatial activity
found in Lλ(x, y; t) by removing the lower frequency activity
represented in a histogram smoothed at a higher value of t,
according to

b(x, y; t) =

{
1 if (L′λ(x, y; t)− L′λ(x, y; t+ a) > ε
0 otherwise

(4)

where a is a constant and ε is a small threshold applied
to the magnitude of the response to suppress noise. When a
approaches zero the Difference of Gaussians operation above
closely approximates the Laplacian of Gaussian, effectively
detecting edges between two areas of uniform but different
intensities in the weighted histogram.

By considering t as a continuous variable, each label gener-
ates closed contours across one or more ranges of scales [31],
provided it is not considered as noise and filtered out. Across
scales contours can be formed, cease to exist, merge with
other contours or split into multiple contours. By fixing the
scale factor t contours are obtained that are appropriate for
that scale. We illustrate this in Figure 1.

Figure 1: The contours for a certain label across a contin-
uous set of scales undulate, forming peaks and valleys.
For visualization purposes we show a two-dimensional
view of the three-dimensional plot b(x, y; t) by fixing y.
Here, the scale dimension t runs from top to bottom,
the spatial dimension x runs from left to right and the
spatial dimension y would run from front to back.

At this point we have obtained disjoint contours repre-
senting the area where a label is particularly prominent, al-
though depending on the underlying data distribution these
may be incoherent. In order to turn this into a set of dis-
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Figure 2: Region generation given a binary representation of the label spain. We first fill all outer contours (left) and
then smooth and connect disjoint areas by applying a morphological closing operation that first dilates (middle-left)
and then erodes (middle-right) the binary representation, after which the contours are traced (right) to extract the
characteristic regions. Here, the label was also prominently used on the Balearic islands (an archipelago of Spain),
Melilla (an exclave of Spain) and in a small area in France, causing regions to emerge there as well.

tinct, contiguous regions, we apply three image processing
techniques to the binary representation of a label.

Contour filling
We observe that the Difference of Gaussians operation may
yield more than one concentric contour for a label for each
crossing of the threshold ε. To emphasize the full spatial
extent of a label rather than its internal density, we apply
contour tracing [6] to the binary representation to extract
the outermost contours that mark the areas where the label’s
influence drops below the threshold for the last time. We fill
the entire area enclosed by the outer contours, implicitly
discarding any inner contours.

Morphological closing
To smooth the contours and to connect disjoint regions that
are separated from each other by a small gap, we apply mor-
phological closing to the binary representation after it has
been filled. Morphological closing first performs a dilation
step followed by an erosion step, where in both steps the
same disk-shaped structuring element S is applied to the
binary representation, such that

b(x, y; t) • S = (b(x, y; t)⊕ S)	 S (5)

where the radius ρ of the structuring element can be ad-
justed to enforce more or less smoothing of a region’s con-
tour. The value to use for ρ depends on the envisioned use
case, where the parameter can be manually explored or au-
tomatically optimized using a particular objective function,
e.g. see Section 5.1.

Contour tracing
We again apply contour tracing to the binary representation
of each label to extract the outer contours of the locally
characterizing regions that have emerged.

We illustrate the image processing operations in Figure 2.
Note that these techniques form just one of many ways of
generating regions from the binary representation. The con-
tour filling operation could for instance be substituted by
applying flood filling that would skip any inner (nested) con-
tours, while the morphological closing operation could be re-
placed by applying dilate and erode distance transforms [11]
to achieve a similar effect. If necessary, the resulting polygon
description could even be further simplified, e.g. through it-
erative end-point fit algorithms [35]. The main motivation
for using the image processing techniques we described ear-
lier is because they are mature, well-understood and because
efficient implementations exist.

3.4 Region selection
Each binary representation for a label λ at scale t may re-
sult in multiple regions emerging at a particular scale. These
regions can still vary substantially in their possible sizes,
ranging from very small to very large, where their size is
primarily determined by the spatial prominence of the label
and the magnitude of the signal that remains after the Dif-
ference of Gaussians bandpass filter has been applied. Fur-
thermore, the total number of regions generated for all of the
labels combined may be too large for effective use. Depend-
ing on the envisioned use case further region selection may
therefore be necessary. For instance, it may be appropriate
to apply a ranking function to only pick a subset of the re-
gions to be shown; the function could be parameterized with
characteristics of the regions, such as area size or data den-
sity, or alternatively could include constraints to limit the
maximal permissible amount of overlap between regions in
order to select a disjoint or only partially overlapping set of
regions to reduce visual clutter.

3.5 Parameterization
Our technique requires the specification of several parame-
ter values that are, to a certain extent, dependent on the
envisioned use case as well as the data itself. For analysis
and visualization purposes, one usually focuses on only a
limited number of scale levels s ∈ N at which the contours
are obtained. The distance between consecutive scale levels
is not necessarily linear in terms of the scale factor t but
in online map-based interfaces, such as Yahoo! Maps, it is
often roughly quadrupled so that t = 4s. In addition, the dis-
tance between the scale-space representations to which the
Difference of Gaussians operation is applied is controlled by
the parameter a, which does not necessarily cover the entire
range between consecutive scale levels. We illustrate these
notions in Figure 3. By adjusting how t is obtained from s, as
well as suitably setting a, the amount of smoothing between
consecutive scales can be optimized to emphasize certain fre-
quency ranges within the underlying data at certain scales.
Finally, the noise threshold ε and the default radius ρ of the
disk-shaped structuring element used by the morphological
closing operation both affect the number, shape and size of
the regions that emerge from the data.

If ground truth regions are available it is straightforward
to derive the (near-)optimal parameter values by exhaus-
tively comparing the obtained regions with the ground truth
across a range of parameters. Multi-parameter learning al-
gorithms [38, 42] can be applied to more efficiently direct the
search and thus speed up convergence towards optimality.
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Figure 3: Illustration of the relationship between scale
level s, scale factor t and Difference of Gaussians distance
a. At scale level s = 2 the associated scale factor is t = 16,
whereas at scale level s = 3 the scale factor is t = 64.
At both locations the underlying density histogram is
smoothed using a kernel parameterized by t and a kernel
parameterized by t+a after which the difference between
them is taken.

3.6 Complexity
In contrast with techniques that process individual labeled
instances, such as clustering-based approaches, our tech-
nique processes aggregate label counts, which for large quan-
tities of data is much more computationally efficient, since
the computational complexity does not increase with the size
of the collection once the data has been represented as a his-
togram. Our approach is furthermore inherently paralleliz-
able. Nonetheless, examining millions of labeled instances
in order to assign them to the correct cells within the his-
tograms can still be a time-consuming process – an issue of
importance for highly dynamic online datasets – although in
preliminary experimentation we observed that for our par-
ticular labeled collection the amount of computation could
be reduced by subsampling the data without substantially
compromising the shape and size of the final regions; how-
ever this may not necessarily be the case for other datasets.

4. IMPLEMENTATION
To demonstrate our region discovery technique we envisage
a scenario prompted by users wanting to explore and browse
large-scale geographically annotated media collections. This
kind of scenario is particularly important to address, con-
sidering exploration has been shown to be the predominant
mode of interaction for users of media systems [20] and ex-
ploration and browsing systems that allow the user to gain
insight into and support the exploration of media collections
are therefore needed [29]. In this section we present details
on the implementation of our technique in the context of
such a system, where we uncover the regions present within
a large collection of labeled georeferenced photographs taken
from the online image sharing website Flickr1. A preliminary
version of our photo exploration and browsing system was
presented in earlier work [43]. We emphasize, however, that
our region discovery technique can be applied to any kind of
labeled dataset of similar nature and not just to visual me-
dia; whether (meaningful) regions emerge entirely depends
on the characteristics of the dataset. The optimizations we
outline below for representing large-scale datasets are gen-
eralizable and not specific to our particular dataset.

1http://www.flickr.com/

4.1 Dataset
Our Flickr dataset contains a sample of over 56 million geo-
referenced images uploaded to Flickr before the end of 2010.
Each photo is represented by a geographic location, indi-
cated by longitude and latitude, and one or more tags as-
signed to the photo by the uploading user. We consider each
instance of a tag associated with a photo as a label and an-
notate each label with the location information of its source
photo. A single photo may thus generate multiple instances
of annotated labels. We perform sanitization on the data
by removing all non-latin characters, reducing all remaining
latin characters to their lowercase representation and remov-
ing all diacritics, so that tags like Espa~na and Gaudı́ become
espana and gaudi respectively. We remove tags that refer
to years, such as 2006 and 2007, as well as camera manu-
facturer names, such as canon and nikon, because these at
times get automatically added by capture devices or photo
applications and thus are not representative for the tagging
behavior of users. We additionally remove infrequently used
tags by ensuring we have at least 50 instances per tag oc-
curring around the world; while infrequently used tags could
certainly yield a locally characterizing region, it was shown
in [41] that the tag frequency distribution in photos up-
loaded to Flickr follows a power law with the very long tail
containing the infrequent tags that typically were catego-
rized as incidentally occurring words, making it unlikely such
tags will actually generate regions.

4.2 Representation
We aim to compute the regions for all remaining tags in
the dataset at several different scales, ranging from street
level to world level. At the lowest scale level (i.e. zoomed in)
the finest details are captured from the highest frequency
components present within the normalized data, while at
higher scale levels (i.e. zoomed out) the coarser structure is
uncovered from the lower frequency components. This also
corresponds well with the paradigm used by typical online
systems that show interactive map-based views of the world,
where the act of zooming in increases the spatial resolution
to reveal more detail, whereas zooming out decreases the
spatial resolution and reduces the level of detail.

In order to capture the finest details at the lowest scale
the underlying scale-space representation of each tag needs
to be of sufficiently high spatial resolution, whereas at higher
scales such high resolution is not as necessary; provided that
the resolution of the representation is at least high enough
to capture the details at each scale level and the Gaussian
kernel is correctly adjusted to retain the correct amount of
smoothing, our scale-space region derivation technique gen-
erates equivalent regions at a reduced resolution at lower
computational cost.

We therefore express the difference between two consec-
utive scales by changing the spatial resolution of the scale-
space representation by a factor of two along each dimen-
sion, where incrementing the scale level s quarters the spatial
resolution u, while decrementing s quadruples it, which also
approximates the effects of zooming in and out on the spa-
tial resolution in typical online map-based systems. At the
same time we apply the reverse to the scale factor t, where
incrementing the scale level s quadruples the scale factor
t, while decrementing s quarters it. Since convolving a his-
togram with a kernel of width σ is analogous to convolving a
histogram of quadruple the resolution with a kernel of width
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2σ, the inverse relationship between u and t effectively al-
lows us to apply the same Gaussian kernel at each scale level.
We illustrate our representation in Figure 4.

Figure 4: Scale-space representation using variable spa-
tial resolution, where the weighting of the scale-space
representation of a label in proportion to how much it
contributes to the overall data density is represented by
the symbol � and the difference operation between two
scales is represented by the symbol �. The scale-space
representation is divided into a varying number of blocks
that can be processed in parallel.

As the earth is commonly represented using a cylindri-
cal projection that results in longitude values ranging twice
as far as latitude values (±180◦ versus ±90◦), we found
for varying numbers of s that scale-space representations
of height h = r2k−s−1 and width w = 2r2k−s−1 gave results
equivalent to those obtained when using representations of
the highest resolution at each scale, where k refers to the to-
tal number of scale levels being used and r is a constant. In
our case we set k = 12, which is comparable to the number
of scales found in online mapping systems such as Yahoo!
Maps, and r = 1, 440, which for convenience is a power-of-
two multiple of the total number of degrees along the lon-
gitudinal and latitudinal axes. At street level, where s = 0,
this effectively results in a scale-space representation of ap-
proximately 6 million by 3 million cells, whereas at world
level, where s = k− 1, the representation measures 2,880 by
1,440 cells; at street level the largest cell is approximately
the equivalent of 0.0001◦ longitude at the equator, measur-
ing roughly 13m, while at world level it is the equivalent of
0.25◦ longitude at the equator, or about 28km.

At lower levels of s the representations are typically too
large to fit into the memory of a ‘standard’ personal com-
puter, e.g. at s = 0 the scale-space representation for a single
tag at a single scale level using 4-byte floating-point values
would require 63TB of memory (although admittedly stor-
ing the representation in a sparse format would substan-
tially reduce this number). We therefore further optimize
the computations by partitioning each histogram into over-
lapping blocks measuring o + r + o by o + r + o cells and
process each of them separately in parallel. Here, r is de-
fined as before and refers to the core area of the block, while
o is a sufficiently large border area to avoid the boundary
effects otherwise caused by applying the Gaussian kernels
or morphological operations to a block containing solely the
core area. A labeled data point will thus appear only once
in a core area, but may also appear in one or more bor-

der areas of its neighboring core areas. Once each block has
been processed we then discard the borders, after which we
can trivially connect regions spanning across adjacent blocks
along their seams.

4.3 Visualization
The final step in our implementation is to integrate all afore-
mentioned aspects into a single system that supports zoom-
able browsing and exploration of the photos taken across the
globe through their tag regions. Our interface, presented in
earlier work [43] and shown in Figure 5, initially displays a
geographic map of the user’s estimated location along with
any tag regions for their current map zoom level. The user
can explore the regions detected in the world using stan-
dard map-based navigation operations such as zooming and
panning. A region can be visually browsed by clicking on
it, after which our system issues an API call to Flickr to
retrieve photos taken within that region that are associated
with the region’s tag. Our system also supports querying for
regions associated with one or more specific places or tags,
the latter of which is particularly useful when one wants to
visually compare the photos belonging to different regions
having the same tag. To provide additional insight into the
discovered regions we used the Geonames2 gazetteer to label
tags that refer to place names by matching tags with entries
in the gazetteer in order to give the user the ability to show
or hide regions based on this property.

Figure 5: A screenshot of our interface showing all tag
regions detected in the United States at scale level s = 10
and a selection of Flickr photos associated with the tag
region colorado. The region colors are derived from the
tag using a hash function, thus when a tag generates
multiple regions they are assigned the same color.

5. ANALYSIS
In our exploration and browsing scenario, we note that the
tags assigned to Flickr photos are user-generated for which
no valid ground truth exists against which we can compare
the locally characterizing tag regions that emerge from the
data. However, we observe that the tags that generate re-
gions often are toponyms, i.e. referring to place names, and
a visual inspection of the regions generated for tags that
match the name of a country revealed that their shapes and
sizes often closely matched the territorial boundaries, which
was particularly evident when there was sufficient spatial

2http://www.geonames.org/
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coverage of photos taken in that country. Since countries do
have verifiable and canonical boundaries that can be used
for evaluation we will therefore first present an exploration
of parameters appropriate at country level and then discuss
to what degree our parameters are suitably tuned to de-
scribe any type of region in general, in particular given that
toponym and non-toponym boundaries may not behave in
the same manner and that a single set of parameters may
not sufficiently account of differences between regions that
emerge at different scale levels.

5.1 Parameter exploration
We extracted the polygonal boundaries from OpenStreetMap3

for all 192 countries in the world (according to the U.N.) and
computed the regions of each tag matching the name of one
of these countries for an extensive range of parameter values
and scales. Our aim was to determine the optimal param-
eters that would achieve the highest overlap between the
Flickr tag regions and the OpenStreetMap regions by only
varying the kernel size σ and the morphological disk radius
ρ. Since the scale level s is coupled with a scale factor t,
which in turn is coupled with the kernel width σ, through
our parameter exploration we thus empirically determine the
best σ and its associated scale factor t and scale level s.

To get a snapshot of the region contours at a certain scale
level s the spacing distance a ideally goes to zero, although
this would leave gaps in the scale-space from where we would
not obtain any contours. To this end we set our parameter a
to cover the entire distance between consecutive scale levels
to maximize the signal difference and to capture all con-
tours. At each scale level s we thus applied the Difference of
Gaussians operation to the scale-space representations that
were spaced a distance of a = 4s+1−4s apart. This also had
as benefit that the kernel width σ conveniently differed a
factor of two between both representations. We suppressed
low signal responses resulting from the Difference of Gaus-
sians operation by removing those with magnitudes less than
ε = 0.0005 by setting them to zero in the binary representa-
tion, while all signals above the threshold were set to one.

In order to compare the tag regions with the polygonal
boundaries of the countries, we first converted the longitude
and latitude coordinates of all points along their exterior
paths to an equal-area coordinate system using the Gall-
Peters projection [12], allowing us to measure the extent
their geographic areas overlap according to

overlap(Assr, Aosm; s, λ, σ, ρ) =
Assr

⋂
Aosm

Assr
⋃
Aosm

(6)

where Assr refers to the projected area of the scale-space
region with tag λ at scale level s generated using a Gaus-
sian kernel of width σ and a morphological disk of radius
ρ, whereas Aosm refers to the projected area of the Open-
StreetMap region of the country with name λ.

We explored the parameter space where σ ranged from
0.2 to 10.0 in steps of 0.2 and ρ ranged from 5 to 75 in
steps of 5, where for each parameter combination we retained
the highest overlap for each country across all scale levels
after which we averaged the overlaps over all countries. The
results are shown in Figure 6 in which the lines indicate
changes in overlap in steps of 0.02. Our exploration yielded
the overall best results with a highest average overlap of 54%

3http://www.openstreetmap.org/

at σ = 4.8 and ρ = 35. From a practical perspective, given
our variable scale-space representation implementation, we
can simply smooth the overlapping histogram blocks at each
scale level once with a kernel of size σ = 4.8 and once with
a kernel of size σ = 9.6.
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Figure 6: Highest average overlaps across all scales be-
tween the areas of Flickr tag regions referring to coun-
try names and their matching OpenStreetMap regions
shown in a contour plot. Note that the colors do not vary
between contour lines and thus do not exactly reflect the
actual overlap values.

In Figure 7 we show the countries that emerged from our
dataset using the optimal parameter values we established.
As can be seen, the generated regions often follow the outline
of the countries except in areas where there was little pho-
tographic coverage in our Flickr sample, such as in Africa,
Russia and the Middle East. Interestingly, we observe sev-
eral instances where the country regions overlap more than
just along the border, e.g. Mexico and the state of Texas in
the United States; India that covers Nepal, Bangladesh and
Bhutan. Furthermore, we noticed – as expected – that the
size of a country did appear to matter at which scale level its
best overlap was attained, where larger countries tended to
be found at a more global level and smaller ones at a more
local level, see Figure 8.

Figure 7: Flickr tag regions referring to country names
generated at parameters σ = 4.8 and ρ = 35 extracted at
the scales where they had the best overlap.
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Figure 8: Box and whisker plot showing scale levels 0 to
4 versus area size at which Flickr tag regions referring
to country names had the best overlap.

With the best parameter combination for the tag region
generated for an individual country we ranked them by their
overlap scores, shown in Table 1, demonstrating that with
correctly tuned parameters we could achieve overlaps as high
as 84.1%. This must be considered with respect to the avail-
able coverage of geotagged Flickr photos in each country, as
those with poorer coverage across the whole of the territory
are likely to give poorer overlap values.

While we acknowledge that we cannot draw any definite
conclusions based on our parameter exploration in light of
the absence of ground truth beyond country regions, the
results suggest that the best parameter values we have ob-
tained for tag regions relating to countries may transfer to
other types of regions as well, in particular because the pa-
rameters remained stable for regions of varying sizes, while
at the same time they were typically obtained at scales ap-
propriate for the region given its size. However, upon closer
inspection of local regions, we discovered that the tag re-
gions that were already detected at more global levels were
still present at local levels. While the regions emerging at
global scales have a large footprint that in principle should
be removed at local scales – since the Difference of Gaussians
operation acts as a band-pass filter – at street level the cov-
erage of the world in terms of Flickr photos is patchy and
they thus still emerge in the form of disjoint smaller regions.
One possible solution to this would be to hierarchically con-
nect tag regions by determining superior, inferior and sub-
stitution relations between regions [22] and avoid displaying
regions at scales substantially lower than the highest scale
they have already been found at. This technique would at the
same time resolve an issue we observed with near-identical
regions emerging that only differ in the language of their
associated tags.

5.2 Comparison
As already described in the related work section, alterna-
tive techniques for deriving colloquial regions from labeled
data can be found in the research literature. In this sec-
tion we present a comparison between the characteristic re-
gions our technique generates and those obtained using a
recently proposed approach that we briefly describe below;
our main criteria for choosing this technique was its ability

Table 1: Top tags yielding the highest average overlap be-
tween their Flickr tag regions referring to country names
and their matching OpenStreetMap regions.

Tag Overlap
1 germany 84.1%
2 belarus 83.1%
3 poland 83.0%
4 sweden 82.6%
5 cambodia 81.8%
6 south africa 81.6%
7 czech republic 81.3%
8 turkey 80.8%
9 finland 80.0%
10 greece 79.6%

to analyze data at different scales, its applicability to noisy
user-generated data on a per-label basis without requiring
too many parameters to be tuned and its ability to gener-
ate regions of arbitrary shapes. These constraints therefore
directly ruled out many other approaches that focus on de-
riving regions by inspecting the distribution of the georefer-
enced objects rather than the labels [1, 7, 9, 33], those that
focus on the stability of regions across scales rather than the
relevance of a region at a particular scale [37], those that can
only model regions as elliptical shapes [3], as well as those
that do not derive any kind of statistics that measure the
influence of a label with respect to all other labels [25], as
this would result in regions being generated that can im-
possibly be locally characterizing. To elaborate on the latter
issue, in our preliminary experiments we observed the tag
beach to be present all over the city center of Barcelona,
likely due to users having bulk tagged the photos they took
on their holiday trip; with the prominence weighting these
tags were voted down at those locations by our algorithm,
whereas without such weighting these tags formed a large
region that clearly was not locally characterizing.

Crowd-based noise filtering
The objective of the technique of Intagorn and Lerman [18]
is the same as ours, namely to derive regions for labels at
several scales that are locally special with respect to the
use of other labels. However, their approach is different in
that it is based on clustering the data relevant for a par-
ticular label at a particular scale, after which the polygo-
nal boundaries of the clusters are derived. In addition, the
method essentially treats each scale independently from all
other scales, unlike our work. Note that the technique is
very similar to the approach proposed by Jung et al. [22],
although the latter focused on four well-known cities only,
whereas the crowd-based noise filtering technique analyzed
tags at various scales by varying the parameters and thus
fits the context of our comparison better.

To briefly describe the crowd-based noise filtering tech-
nique, the underlying algorithm first partitions the world
into cells, where for each cell it computes a statistic involving
the number of distinct people that used each of the distinct
tags in that cell. For each distinct tag the method then as-
sesses whether its occurrence at a certain cell is particularly
significant. All cells in which a tag is not used significantly
enough are discarded, whereas the remaining cells are clus-
tered by treating them as connected nodes in a graph, in
which edges are formed between nodes when they are close
enough according to some threshold and disjoint clusters are
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then identified using connected component analysis. Finally,
a polygonal boundary is derived for each resulting cluster by
finding a Delauney triangulation that completely subsumes
the data within each cluster, where the smoothness of the
boundary can be controlled by setting a parameter.

Parameterization
For the evaluation of the colloquial regions generated by
both techniques, we focused on nested bounding boxes within
the world at different scales corresponding to intuitive geo-
graphic areas, where the scales zoom in from the World, to
Europe, to Spain, to Catalonia and finally ending in Barcelona,
allowing us to investigate the kind of regions that emerge
and the nature of their differences.

For our scale-space region derivation technique we used
the optimal parameters as determined through our param-
eter exploration, σ = 4.8, ρ = 35 and ε = 0.0005, and as
scale levels for the World s = 0, Europe s = 2, Spain s = 3,
Catalonia s = 6 and Barcelona s = 10. As mentioned ear-
lier, while appropriate for a particular scale, our technique
can produce regions that may vary substantially in size; con-
sidering that a typical computer screen has a resolution on
the order of 1440x1440 pixels (hence we had set our block
size r to these values), we required that the regions occu-
pied a minimum surface area of 1000 cells and a maximum
of 400,000 cells to ensure they are not too large or too small
for viewing purposes.

For the crowd-based noise filtering technique we in prin-
ciple used the parameter values mentioned in the paper at
the scale levels that were presented, unless we observed that
an adjustment resulted in better results; we used param-
eters α = 10, k = 1 and as scale levels for the World
Eps = 500, Europe Eps = 100, Spain Eps = 50 and Cat-
alonia Eps = 10. Due to the minimum cell size of the world
within which the statistics were computed, as specified by
α, we could not compute the regions for Barcelona, because
this required a finer grid size.

Results
From the quantity of regions obtained at the various scales,
shown in Table 2, we can instantly see that the crowd-based
noise filtering technique discovers a large number of regions,
even after we already limited it by setting a minimum surface
area. In contrast, our scale-space region derivation technique
finds a small number of regions at world level and larger
numbers as the scale level becomes more local. The notion
of finding more regions at local scales makes intuitive sense,
since at global scales only the regions with large footprints
will emerge, of which there are few, while at local scales only
the regions with small footprints will be discovered, of which
there are many.

Table 2: Number of regions detected by our scale-space
region derivation technique (SSR) and by the crowd-
based noise filtering technique (CNF) for different areas
of the world.

Area SSR CNF
World 488 492197
Europe 1274 633193
Spain 3285 663528
Catalonia 6968 617047
Barcelona 9963 —

We illustrate the resulting regions detected within the
four geographic areas in Figure 9. As can be seen, both
approaches have roughly equivalent coverage of the world,
where differences show up at different scale levels. For in-
stance, the crowd-based noise filtering technique is able to
cover Africa almost completely and also a larger part of Rus-
sia than our scale-space regions approach, and furthermore
produces more regions in the Spanish state of Catalonia.

Qualitatively, the scale-space tag regions appear to more
closely fit the country regions, whereas the regions produced
by the crowd-based noise filtering technique seem to be rather
crude; when measuring this quantitatively, by comparing
both approaches in terms of overlap with the OpenStreetMap
country regions, the scale-space regions approach achieved
an average overlap of 56.1%, while the crowd-based noise fil-
tering approach reached an average overlap of 41.9% using
the clustering distance threshold of Eps = 100 as specified
in the paper. Furthermore, due to the scale-space technique
generating substantially less regions the interface appears
less cluttered than when it is filled with the regions pro-
duced by the crowd-based noise filtering approach.

When analyzing the underlying technique of the crowd-
based noise filtering approach, it becomes clear why it pro-
duces such a large quantity of regions. Namely, once a single
labeled data point exceeds the threshold set by the statistic
associated with the grid cell the data point is assigned to
a region will be generated; the region initially is very small
and may get clustered together with other regions, but if
not it will remain to exist since the algorithm does not per-
form any filtering on the produced regions. We can clearly
see this in the figures, where even after filtering out small
regions and showing a small subset of regions the interface
still shows many regions.

6. CONCLUSIONS
In this paper we presented a novel, generalized framework
that automatically uncovers locally characterizing regions
present within geotagged data using scale-space theory. The
regions are generated by applying image analysis techniques
to the scale-space representations of each data label. To han-
dle large labeled collections across a wide range of scales
we presented optimized implementation techniques to per-
form the region derivation in an efficient parallel manner.
We analyzed the obtained tag regions in terms of the pa-
rameterization of the scale-space model at different scales
and compared them against the regions produced by a re-
cently proposed technique, showing that our tag regions can
closely resemble the polygonal boundaries of the places they
refer to. We envisage our technique being used to help users
explore labeled geographic data in new ways, allowing them
to draw insights in a manner that current interfaces to such
data do not yet support. In future work we would like to
investigate the implications of a dynamic dataset on the re-
gions produced by our scale-space model and extend our
technique to incorporate time as an additional dimension in
our scale-space model for the purpose of detecting regions for
labeled spatiotemporal data. Furthermore, we would like to
use the discovered regions for purposes beyond media explo-
ration, such as supporting spatially-aware and temporally-
aware tagging, for instance learning when to suggest certain
tags based on the geographic location and the timestamp of
a given photo.
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Figure 9: The regions detected by our scale-space region derivation technique (left column) and those by the crowd-
based noise filtering technique (right column) for the geographic areas of the World (top), Europe (middle-top),
Spain (middle-bottom) and Catalonia (bottom). To avoid excessive numbers of regions to be returned we limited the
crowd-based noise filtering to return at most 10,000 regions.
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